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Motivation 

 Bayes filter is a useful tool for state estimation 

 Histogram filter with grid representation is not very efficient 

 How can we represent the state more efficiently? 
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Kalman Filter 

 Bayes filter with continuous states  

 State represented with a normal distribution 

 Developed in the late 1950’s 

 Kalman filter is very efficient (only requires a few matrix 
operations per time step) 

 Applications range from economics,  
weather forecasting, satellite navigation  
to robotics and many more 
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Normal Distribution 

 Univariate normal distribution 
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68% of mass 
within 1sd 

99% of mass within 3sd 

mean variance (squared std dev) 



Normal Distribution 

 Multivariate normal distribution 

 Mean 

 Covariance 

 Probability density function 
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2D Example 
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Isolines (contour plot) Probability density function (pdf) 

68% 

95% 



Properties of Normal Distributions 

 Linear transformation  remains Gaussian 

 

 

 

 Intersection of two Gaussians  remains Gaussian 
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Linear Process Model 

 Consider a time-discrete stochastic process (Markov chain) 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a Gaussian 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a Gaussian 

 

 Assume that the system evolves linearly over time, then 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a Gaussian 

 

 Assume that the system evolves linearly over time and 
depends linearly on the controls 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a Gaussian 

 

 Assume that the system evolves linearly over time, depends 
linearly on the controls, and has zero-mean, normally 
distributed process noise 
 
 
with  
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Linear Observations 

 Further, assume we make observations that depend linearly 
on the state 
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Linear Observations 

 Further, assume we make observations that depend linearly 
on the state and that are perturbed by zero-mean, normally 
distributed observation noise 
 
 
with 
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Kalman Filter 

Estimates the state      of a discrete-time controlled process 
that is governed by the linear stochastic difference equation 
 

 

and (linear) measurements of the state 
 
 
with                        and  
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Variables and Dimensions 

 State 

 Controls 

 Observations  

 Process equation 

 

 

 Measurement equation 
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Kalman Filter 

 Initial belief is Gaussian 
 

 

 Next state is also Gaussian (linear transformation) 
 

 

 Observations are also Gaussian 
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Remember: Bayes Filter Algorithm 

For each time step, do 

1. Apply motion model 
 
 

 

2. Apply sensor model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

1. Apply motion model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

1. Apply motion model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

2. Apply sensor model 
 
 
 
 
 
 

 
with                                                 (Kalman gain) 
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Kalman Filter Algorithm 

For each time step, do 

1. Apply motion model (prediction step) 
 
 

 

2. Apply sensor model (correction step) 

 
 
with 
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See Probabilistic Robotics for 
full derivation (Chapter 3) 



Complexity 

 Highly efficient: Polynomial in the measurement 
dimensionality k and state dimensionality n: 

 

 

 Optimal for linear Gaussian systems! 

 Most robotics systems are nonlinear! 
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Nonlinear Dynamical Systems 

 Most realistic robotic problems involve nonlinear functions 

 

 Motion function 

 

 Observation function 

 

 Can we linearize these functions? 

 

Jürgen Sturm Autonomous Navigation for Flying Robots 24 



Taylor Expansion 

 Idea: Linearize both functions 

 Motion function 

 

 

 

 Observation function 
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Extended Kalman Filter (EKF) 

For each time step, do 

1. Apply motion model (prediction step) 
 

 
                                           with 

2. Apply sensor model (correction step) 

 
 

with                                                  and 
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Lessons Learned 

 Kalman filter 

 Linearization of sensor and motion model 

 Extended Kalman filter 

 

 Next: Example in 2D 
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