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Motivation 

 Bayes filter is a useful tool for state estimation 

 Histogram filter with grid representation is not very efficient 

 How can we represent the state more efficiently? 
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Kalman Filter 

 Bayes filter with continuous states  

 State represented with a normal distribution 

 Developed in the late 1950’s 

 Kalman filter is very efficient (only requires a few matrix 
operations per time step) 

 Applications range from economics,  
weather forecasting, satellite navigation  
to robotics and many more 
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Normal Distribution 

 Univariate normal distribution 
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68% of mass 
within 1sd 

99% of mass within 3sd 

mean variance (squared std dev) 



Normal Distribution 

 Multivariate normal distribution 

 Mean 

 Covariance 

 Probability density function 
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2D Example 
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Isolines (contour plot) Probability density function (pdf) 
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Properties of Normal Distributions 

 Linear transformation  remains Gaussian 

 

 

 

 Intersection of two Gaussians  remains Gaussian 
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Linear Process Model 

 Consider a time-discrete stochastic process (Markov chain) 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a Gaussian 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a Gaussian 

 

 Assume that the system evolves linearly over time, then 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a Gaussian 

 

 Assume that the system evolves linearly over time and 
depends linearly on the controls 

 

 

Jürgen Sturm Autonomous Navigation for Flying Robots 11 



Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a Gaussian 

 

 Assume that the system evolves linearly over time, depends 
linearly on the controls, and has zero-mean, normally 
distributed process noise 
 
 
with  
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Linear Observations 

 Further, assume we make observations that depend linearly 
on the state 
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Linear Observations 

 Further, assume we make observations that depend linearly 
on the state and that are perturbed by zero-mean, normally 
distributed observation noise 
 
 
with 
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Kalman Filter 

Estimates the state      of a discrete-time controlled process 
that is governed by the linear stochastic difference equation 
 

 

and (linear) measurements of the state 
 
 
with                        and  
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Variables and Dimensions 

 State 

 Controls 

 Observations  

 Process equation 

 

 

 Measurement equation 
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Kalman Filter 

 Initial belief is Gaussian 
 

 

 Next state is also Gaussian (linear transformation) 
 

 

 Observations are also Gaussian 

 

Jürgen Sturm Autonomous Navigation for Flying Robots 17 



Remember: Bayes Filter Algorithm 

For each time step, do 

1. Apply motion model 
 
 

 

2. Apply sensor model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

1. Apply motion model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

1. Apply motion model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

2. Apply sensor model 
 
 
 
 
 
 

 
with                                                 (Kalman gain) 
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Kalman Filter Algorithm 

For each time step, do 

1. Apply motion model (prediction step) 
 
 

 

2. Apply sensor model (correction step) 

 
 
with 
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See Probabilistic Robotics for 
full derivation (Chapter 3) 



Complexity 

 Highly efficient: Polynomial in the measurement 
dimensionality k and state dimensionality n: 

 

 

 Optimal for linear Gaussian systems! 

 Most robotics systems are nonlinear! 
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Nonlinear Dynamical Systems 

 Most realistic robotic problems involve nonlinear functions 

 

 Motion function 

 

 Observation function 

 

 Can we linearize these functions? 
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Taylor Expansion 

 Idea: Linearize both functions 

 Motion function 

 

 

 

 Observation function 

 

 

Jürgen Sturm Autonomous Navigation for Flying Robots 25 



Extended Kalman Filter (EKF) 

For each time step, do 

1. Apply motion model (prediction step) 
 

 
                                           with 

2. Apply sensor model (correction step) 

 
 

with                                                  and 
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Lessons Learned 

 Kalman filter 

 Linearization of sensor and motion model 

 Extended Kalman filter 

 

 Next: Example in 2D 
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