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Motivation

= Bayes filter is a useful tool for state estimation

TUTI

= Histogram filter with grid representation is not very efficient

= How can we represent the state more efficiently?
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Kalman Filter

= Bayes filter with continuous states
= State represented with a normal distribution
= Developed in the late 1950°s

= Kalman filter is very efficient (only requires a few matrix
operations per time step)

Applications range from economics,
weather forecasting, satellite navigation
to robotics and many more
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Normal Distribution

= Univariate normal distribution X ~ A(u, 0?)
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Normal Distribution M

= Multivariate normal distribution X ~ ANV (p, 3)
= Mean pu € R

= Covariance X ¢ R™"

= Probability density function

p(X =x) =N(x;p,X)
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2D Example TUT

Probability density function (pdf) Isolines (contour plot)
y T | | T
\\ Al ]
p(z.y) 1 589
0.1
0 |
5.102 5 7 Ll 95% |
0
Y - L |

Jurgen Sturm Autonomous Navigation for Flying Robots 6



Properties of Normal Distributions TUM

= Linear transformation - remains Gaussian
X ~N,X),Y ~AX +B
=Y ~NAp+B,AZA")
= |Intersection of two Gaussians = remains Gaussian
Xy~ N(p1,20), Xo ~ N (p2, 3)
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Linear Process Model M

= Consider a time-discrete stochastic process (Markov chain)
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Linear Process Model

= Consider a time-discrete stochastic process
= Represent the estimated state (belief) by a Gaussian
Xg N(uta Et)
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Linear Process Model M

= Consider a time-discrete stochastic process
= Represent the estimated state (belief) by a Gaussian
x; ~ N (e, 34)
= Assume that the system evolves linearly over time, then

Xy = AX¢ 4
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Linear Process Model M

= Consider a time-discrete stochastic process
= Represent the estimated state (belief) by a Gaussian
Xg N(uta Et)

= Assume that the system evolves linearly over time and

depends linearly on the controls
Xt = AXt—l -+ But
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Linear Process Model M

= Consider a time-discrete stochastic process
= Represent the estimated state (belief) by a Gaussian
Xg N(Nt, Et)

= Assume that the system evolves linearly over time, depends
linearly on the controls, and has zero-mean, normally
distributed process noise

Xt = AXt_l + But + €
with €; ~ N(O, Q)
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Linear Observations M

= Further, assume we make observations that depend linearly

on the state
Zy — CXt
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Linear Observations M

= Further, assume we make observations that depend linearly
on the state and that are perturbed by zero-mean, normally
distributed observation noise

Zy — CXt -+ 6t
with §, ~ N (0,R)
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Kalman Filter M

Estimates the state x; of a discrete-time controlled process
that is governed by the linear stochastic difference equation

Xt = AXt_l + But + €

and (linear) measurements of the state
Zy — CXt -+ 5t

with 6, ~ N (0,R) and € ~ N(0,Q)
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Variables and Dimensions

= State x € R"
Controls u € R’
Observations z € R*
= Process equation

X = A x4 B u;,+e
t = A Xp 11+ D u+ €
nxn nxl
= Measurement equation
Zi — C X + 5,5

nxk
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Kalman Filter
= |nitial belief is Gaussian
Bel(xo) = N (xo; po, Xo)

= Next state is also Gaussian (linear transformation)

x; ~ N(Ax;_1 + Bu;, Q)

= Observations are also Gaussian
Zy ~~ N(CXt, R)
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Remember: Bayes Filter Algorithm

For each time step, do
1. Apply motion model

Bel(x,) = /p(xt | x;_1,uy)Bel(x;_1)dx; 4

2. Apply sensor model
Bel(x:) = np(z: | x;)Bel(x)
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From Bayes Filter to Kalman Filter

For each time step, do
1. Apply motion model
Bel(x;) = / p(x¢ | x¢-1,u4)  Bel(x;1)
< 2R ,

"V a

N (xp;Ax—1+Buy, Q) N (x¢—1;p06—1,%51—1)
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From Bayes Filter to Kalman Filter M

For each time step, do
1. Apply motion model
Bel(x,) :/ p(x | X1,m)  Bel(x,p)  dx;

~~ ~ N——
N (xt;Axt—1+Bu, Q) N (x¢—1;p0t—1,%5¢—1)

= N(x;; Api_1 +Bu, ASA' + Q)

= N (x5 iy, )
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From Bayes Filter to Kalman Filter M

For each time step, do
2. Apply sensor model
Bel(x;) = 7 p(zt | X¢) Bel(xt)
N (z; CXt R) N(Xt fit,3t)

=N (Xt; i+ Ki(z, — Cp), (I - Ktc)i)
:N(Xt;utyz]t)

with K, = 3,C'(CZ,C' +R)™! (Kalman gain)
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Kalman Filter Algorithm

For each time step, do

1. Apply motion model (prediction step)
e = Apy 1 + Bu,
S, =AXAT +Q

2. Apply sensor model (correction step)
pe = py + Ky(z, — Cliy)
>, = (I-K,C)%,

with K, = £,C' (CZ,C' +R)™!

See Probabilistic Robotics for
full derivation (Chapter 3)
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Complexity

= Highly efficient: Polynomial in the measurement
dimensionality kK and state dimensionality n:

O(k2.376 i n2)

= Optimal for linear Gaussian systems!
= Most robotics systems are nonlinear!
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Nonlinear Dynamical Systems TUM

= Most realistic robotic problems involve nonlinear functions
= Motion function x; = g(u;,x;_1)
= Observation function z; = h(x;)

= Can we linearize these functions?
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Taylor Expansion

= |dea: Linearize both functions
= Motion function

TUTI

Jdg(x,u
g(xt—1,us) = g(pee—1,ug) + g(8X ) (X¢-1 — He-1)

X—Ht—1

= g(pe—1,0p) + Ge(xe—1 — 1)
= Observation function Oh )

X, U B
h(x¢) ~ h(p:) + T t (x¢ — fe)
X=[Lt

= h(py) + He(x, — Hhy)
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Extended Kalman Filter (EKF)

For each time step, do
1. Apply motion model (prediction step)

= g(p—1,u)

$, = G,EG) + Q with G, = 291
2. Apply sensor model (correction step) X i
= iy + Ki(z, — h(fr,))
>, = (1I-KH)Z,
Oh(x,u;)

with K, = . H' (H,3.H' + R)™! and H; =
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Lessons Learned

= Kalman filter
= | inearization of sensor and motion model
= Extended Kalman filter

= Next: Example in 2D
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