

Computer Vision Group Prof. Daniel Cremers

Autonomous Navigation for Flying Robots

Lecture 5.2: Recap on Probability Theory

Jürgen Sturm

Technische Universität München

Probability Theory

- Random experiment that can produce a number of outcomes, e.g., rolling a dice
- Sample space, e.g., $\{1, 2, 3, 4, 5, 6\}$
- Event A is subset of outcomes, e.g., $\{2, 4, 6\}$
- Probability P(A), e.g., P(A) = 0.5

Axioms of Probability Theory

- **1.** $0 \le P(A) \le 1$
- **2.** $P(\Omega) = 1$ $P(\emptyset) = 0$
- **3.** $P(A \cup B) = P(A) + P(B) P(A \cap B)$

A Closer Look at Axiom 3

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Jürgen Sturm

Discrete Random Variables

- X denotes a random variable
- X can take on a countable number of values in $\{x_1, x_2, \dots, x_n\}$
- $P(X = x_i)$ is the **probability** that the random variable X takes on value x_i
- $P(\cdot)$ is called the **probability mass function**
- Example: P(Room) = < 0.7, 0.2, 0.08, 0.02 >Room $\in \{\text{office, corridor, lab, kitchen}\}$

Autonomous Navigation for Flying Robots

Continuous Random Variables

- X takes on continuous values
- p(X = x) or p(x) is called the probability density function (PDF)

$$P(x \in [a, b]) = \int_{a}^{b} p(x) \mathrm{d}x$$

Proper Distributions Sum To One

x

Discrete case

 $\sum P(x) = 1$

Continuous case

 $\int p(x) \mathrm{d}x = 1$

Joint and Conditional Probabilities

•
$$P(X = x \text{ and } Y = y) = P(x, y)$$

- If X and Y are independent then P(x,y) = P(x)P(y)
- $P(x \mid y)$ is the probability of **x** given y $P(x \mid y)P(y) = P(x, y)$
- If X and Y are independent then

 $P(x \mid y) = P(x)$

Conditional Independence

Definition of conditional independence

$$P(x, y \mid z) = P(x \mid z)P(y \mid z)$$

Equivalent to

$$P(x \mid z) = P(x \mid y, z)$$
$$P(y \mid z) = P(y \mid x, z)$$

• Note: this does not necessarily mean that P(x,y) = P(x)P(y)

Marginalization

Discrete case

$$P(x) = \sum_{y} P(x, y)$$

Continuous case

$$p(x) = \int p(x, y) \mathrm{d}y$$

Example: Marginalization

P(X,Y)	x ₁	x ₂	X ₃	X ₄	P(Y)↓
y ₁	1/8	1/16	1/32	1/32	1/4
Y ₂	1/16	1/8	1/32	1/32	1/4
y ₃	1/16	1/16	1/16	1/16	1/4
Y ₄	1/4	0	0	0	1/4
P(X)→	1/2	1/4	1/8	1/8	1

Expected Value of a Random Variable

- Discrete case $E[X] = \sum_{i} x_i P(x_i)$ Continuous case $E[X] = \int x P(X = x) dx$
- The expected value is the weighted average of all values a random variable can take on.
- Expectation is a linear operator

$$E[aX+b] = aE[X] + b$$

Covariance of a Random Variable

Measures the squared expected deviation from the mean

$$Cov[X] = E[X - E[X]]^2 = E[X^2] - E[X]^2$$

Jürgen Sturm

Autonomous Navigation for Flying Robots

Estimation from Data

- Observations $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$
- Sample Mean

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

Sample Covariance

$$\Sigma = \frac{1}{n-1} \sum_{i} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^\top$$

Lessons Learned

- Recap on probability theory
- Random variables
- Joint and conditional probabilities
- Marginalization
- Mean and covariance
- Next: Bayes Law and examples