Autonomous Navigation for Flying Robots

Lecture 5.1: State Estimation

Jürgen Sturm
Technische Universität München
World State (or System State)

- Belief State
 (our belief/estimate of the world state)

- World State
 (real state of the real world)
State Estimation

What parts of the world state are (most) relevant for a flying robot?

- Position
- Velocity
- Obstacles
- Map
- Positions and intentions of other robots/humans
- …
State Estimation

- Cannot observe world state directly
- Need to estimate the world state, but how?
- Infer world state from sensor observations
- Infer world state from executed motions/actions
Sensor Model

- Robot perceives the environment through its sensors

\[z = h(x) \]

(sensor reading) \hspace{1cm} \text{sensor model (observation function)} \hspace{1cm} \text{world state}

- Goal: Infer the state of the world from sensor readings

\[x = h^{-1}(z) \]
Motion Model

- Robot executes an action (or control) \(u \) (e.g., move forward at 1m/s)

- Update belief state according to motion model

\[
x' = g(x, u)
\]

current state \(\downarrow \) executed action \(\downarrow \) executed action

motion model \(\downarrow \) executed action

previous state \(\uparrow \) current state \(\uparrow \) current state
Probabilistic Robotics

- Sensor observations are noisy, partial, potentially missing
- All models are partially wrong and incomplete
- Usually we have prior knowledge
Probabilistic Robotics

- Probabilistic sensor models \(p(z \mid x) \)
- Probabilistic motion models \(p(x' \mid x, u) \)
- Fuse data between multiple sensors (multi-modal)
 \(p(x \mid z_{\text{vision}}, z_{\text{ultrasound}}, z_{\text{IMU}}) \)
- Fuse data over time (filtering)
 \(p(x \mid z_1, z_2, \ldots, z_t) \)
 \(p(x \mid z_1, u_1, z_2, u_1, \ldots, z_t, u_t) \)
Lessons Learned

- World state vs. (internal) belief state
- Sensor and motion models
- Model uncertainty using probability theory

Next:
Recap on Probability Theory